GHG Emissions from LNG Exports – FortisBC Tilbury1a to China

Tyler Bryant

Adebola Kasumu

May 15, 2019

Tilbury LNG

E-Drive and one of the Lowest Carbon in the World

Tilbury liquefies 13 million GJ of natural gas into 0.25 MTPA of LNG and uses about 200 GWh/year of electricity.

Background and Process

- John Hopkins University and University of Calgary published a paper showing the GHG reduction potential of BC LNG to the power sector in China in 2018
- Province of BC conducting benchmarking on LNG carbon intensity globally and Tilbury 1a is positioned as cleanest in the world
- FBC contracted study author for a specific look at Tilbury 1a
- FBC provided in-depth knowledge of LNG export activities, gas system and BC's gas market
- Contractor used a number of public sources to develop a lifecycle GHG assessment across gas supply chain to China

Project Scope

Main data sources

Applicable Sources used:

- BC Pembina Shale Scenario Tool
- Data from BC Ministry of Environment and the National Energy Board
- BC Oil and Gas Commission Reserves and Production Report 2016
- FortisBC Tilbury1a Data
- Peer reviewed journal articles
- Model of US LNG emissions owned by the contractor

Key Assumptions Gas supply

- Gas supply mix proportional to current supply from Montney, Horn River, Liard, Jean Marie, Deep Basin and Conventional
- Lack of data applies emissions factors of Montney to other shale sources
- Gas delivered via T-South, no additional distribution emissions
- 45% methane reduction in upstream and transport in-line with provincial regulations
- Also performed another scenario of 75% methane reduction in upstream and transport

Share of GHG emissions from upstream sources

Downstream scenarios

LNG is shipped to two different end users in China in four different scenarios

	Inland truck	Inland pipeline
ISO Container	Option A	Option C
Bulk Tanker	Option B	Option D
China End-Use	Generic textile	Generic chemical

GHG Emission factors for different transport methods (FortisBC Tilbury1a – Shanghai, China)

Findings – GHG Emission factors for different transport methods (FortisBC Tilbury 1a – Shanghai, China)

Findings – 4 Options of Transportation (FortisBC Tilbury 1a – Shanghai, China)

GHG Emission factors from total transportation

Energy at work 🏀 FORTIS BC"

Industrial energy use in China

Assumptions

- Lack of data makes it difficult to conduct detailed analysis
- Used two sources to estimate upstream and downstream emission factor in China industry
- Assumed one end use emission factor for gas in both industries
- Conservative estimate of total emissions in Chinese industry
- Net emissions changes could vary depending on data source applied

Findings – FortisBC Emissions vs Local Emissions in China

For the Chemicals and Textiles industries in Shanghai, China, utilizing any of the four options (A, B, C or D) from FortisBC Tilbury 1a, results in lower emissions than using local energy sources in China.

GHG Emissions Reductions Scenarios Comparison

Comparison of emissions of Shanghai, China, FortisBC Tilbury1a and generic US Plant

LNG from FortisBC Tilbury1a significantly reduces emissions as compared to local sources in China and sources from U.S.

Key Findings

- The maximum GHG reduction potential of Tilbury 1a could be as high as 1 Mt GHG
- Depending on delivery and destination Tilbury1a could reduce anywhere from 30 to 46% of lifecycle GHGs in Chinese industry
- For every tonne of emissions occurring in BC to produce LNG, 2 tonnes of GHG are reduced in China's industry
- Upstream and liquefaction GHGs in BC are less than half that of a generic US facility
- Tilbury reduces GHGs by up to an additional 25% compared to a generic facility in the US Gulf Coast
- Additional GHG policies in upstream gas (methane, electrification) have a small additional impact
- Different delivery methods are more or less GHG intensive however they do not significantly affect the lifecycle GHG reduction potential

LNG Bunkering a Significant Opportunity for BC

20 transpacific vessels: 60 PJ – 1 MTPA – 80 MW - 660 GWh ~ 1.5 Mt lifecycle GHG reduction

Well-to-Wake GHG Emissions 2-Stroke Slow Speed Engines (Tier III)

2-stroke slow speed engines: WtW - GHG IPCC - AR5 [g CO₂-eq/kWh engine output] [g CO₂-eq/kWh engine output] 23 ŝ ŝ 2-stroke MGO 0.1 HFO 2. 2-stroke MGO 0.1 HFO 2. 697 666 697 SS-Diesel SS-Diesel 24 2-stroke 2-stroke 686 121 686 653 SS-Diesel SS-Diesel 37 2-stroke LNG LNG 2-stroke 549 507 132 549 SS-Diesel-DF SS-Diesel-DF CA-BC LNG 2-stroke Ä 2-stroke 37 514 LNG 473 96 514 Ę, Å SS-Diesel-DF SS-Diesel-DF 2-stroke DND 2-stroke LNG 497 96 598 598 SS-Otto-DF SS-Otto-DF CA-BC 2-stroke CA-BC LNG DNG 2-stroke 96 561 96 461 561 SS-Otto-DF SS-Otto-DF 0 0 200 400 600 800 1,000 200 400 600 800 ■ CO2 ■ CH4 ■ N2O Supply Combustion

- When using global LNG, GHG reduction is 14-21% compared with HFO_{2.5} 1.
- 2. The use of BC LNG reduces the GHG emissions by 20-26% compared with HFO_{2.5}
- 3 Methane emissions of oil-based fuels ~3% of total WtW GHG; for LNG: 6-17%

2-stroke slow speed engines: WtW - GHG IPCC - AR5

1,000

Thank you

For further information, please contact:

Tyler Bryant

tyler.bryant@fortisbc.com

778.554.7384

Find FortisBC at:

Fortisbc.com

talkingenergy.ca

